Forces at the Sea Bed using a Finite Element Solution of the Mild Slope Wave Equation
نویسندگان
چکیده
An algorithm to compute forces at the sea bed from a finite element solution to the mild slope wave equation is devised in this work. The algorithm is best considered as consisting of two logical parts: The first is concerned with the computation of the derivatives to a finite element solution, given the associated mesh; the second is a bi–quadratic least squares fit which serves to model the sea bed locally in the vicinity of a node. The force at the sea bed can be quantified in terms of either lift and drag, the likes of Stokes’ formula or traction. While the latter quantity is the most desireable, the direct computation of tractions at the sea bed is controversial in the context of the mild slope wave equation as a result of the irrotationality implied by the use of potentials. This work ultimately envisages a “Monte Carlo” approach using wave induced forces to elucidate presently known heavy mineral placer deposits and, consequently, to predict the existance of other deposits which remain as yet undiscovered.
منابع مشابه
Solution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کاملNumerical Solution of Seismic Wave Propagation Equation in Uniform Soil on Bed Rock with Weighted Residual Method
To evaluate the earth seismic response due to earthquake effects, ground response analyses are used to predict ground surface motions for development of design response spectra, to compute dynamic stresses and strains for evaluation of liquefaction hazards, and to determine the earthquake induced forces that can lead to instability of earth and earth-retaining structures. Most of the analytical...
متن کاملSpectrally formulated finite element for vibration analysis of an Euler-Bernoulli beam on Pasternak foundation
In this article, vibration analysis of an Euler-Bernoulli beam resting on a Pasternak-type foundation is studied. The governing equation is solved by using a spectral finite element model (SFEM). The solution involves calculating wave and time responses of the beam. The Fast Fourier Transform function is used for temporal discretization of the governing partial differential equation into a se...
متن کاملApplication of Boundary Element Method to 3 D Submerged Structures With Open Ends (RESEARCH NOTE)
This paper presents a three dimensional application of direct Boundary-Element Method (BEM) for computing interaction of sinusoidal waves with a large submerged open bottom structure near the floor with finite depth. The wave diffraction problem is formulated within the framework of linearized potential theory and solved numerically with direct BEM. A computer program based on BEM is developed ...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کامل